Odoo18-Base/odoo/tools/float_utils.py

341 lines
16 KiB
Python
Raw Permalink Normal View History

2025-01-06 10:57:38 +07:00
# Part of Odoo. See LICENSE file for full copyright and licensing details.
import builtins
import math
__all__ = [
"float_compare",
"float_is_zero",
"float_repr",
"float_round",
"float_split",
"float_split_str",
]
def round(f):
# P3's builtin round differs from P2 in the following manner:
# * it rounds half to even rather than up (away from 0)
# * round(-0.) loses the sign (it returns -0 rather than 0)
# * round(x) returns an int rather than a float
#
# this compatibility shim implements Python 2's round in terms of
# Python 3's so that important rounding error under P3 can be
# trivially fixed, assuming the P2 behaviour to be debugged and
# correct.
roundf = builtins.round(f)
if builtins.round(f + 1) - roundf != 1:
return f + math.copysign(0.5, f)
# copysign ensures round(-0.) -> -0 *and* result is a float
return math.copysign(roundf, f)
def _float_check_precision(precision_digits=None, precision_rounding=None):
if precision_rounding is not None and precision_digits is None:
assert precision_rounding > 0,\
f"precision_rounding must be positive, got {precision_rounding}"
elif precision_digits is not None and precision_rounding is None:
# TODO: `int`s will also get the `is_integer` method starting from python 3.12
assert float(precision_digits).is_integer() and precision_digits >= 0,\
f"precision_digits must be a non-negative integer, got {precision_digits}"
precision_rounding = 10 ** -precision_digits
else:
msg = "exactly one of precision_digits and precision_rounding must be specified"
raise AssertionError(msg)
return precision_rounding
def float_round(value, precision_digits=None, precision_rounding=None, rounding_method='HALF-UP'):
"""Return ``value`` rounded to ``precision_digits`` decimal digits,
minimizing IEEE-754 floating point representation errors, and applying
the tie-breaking rule selected with ``rounding_method``, by default
HALF-UP (away from zero).
Precision must be given by ``precision_digits`` or ``precision_rounding``,
not both!
:param float value: the value to round
:param int precision_digits: number of fractional digits to round to.
:param float precision_rounding: decimal number representing the minimum
non-zero value at the desired precision (for example, 0.01 for a
2-digit precision).
:param rounding_method: the rounding method used:
- 'HALF-UP' will round to the closest number with ties going away from zero.
- 'HALF-DOWN' will round to the closest number with ties going towards zero.
- 'HALF_EVEN' will round to the closest number with ties going to the closest
even number.
- 'UP' will always round away from 0.
- 'DOWN' will always round towards 0.
:return: rounded float
"""
rounding_factor = _float_check_precision(precision_digits=precision_digits,
precision_rounding=precision_rounding)
if rounding_factor == 0 or value == 0:
return 0.0
# NORMALIZE - ROUND - DENORMALIZE
# In order to easily support rounding to arbitrary 'steps' (e.g. coin values),
# we normalize the value before rounding it as an integer, and de-normalize
# after rounding: e.g. float_round(1.3, precision_rounding=.5) == 1.5
def normalize(val):
return val / rounding_factor
def denormalize(val):
return val * rounding_factor
# inverting small rounding factors reduces rounding errors
if rounding_factor < 1:
rounding_factor = float_invert(rounding_factor)
normalize, denormalize = denormalize, normalize
normalized_value = normalize(value)
# Due to IEEE-754 float/double representation limits, the approximation of the
# real value may be slightly below the tie limit, resulting in an error of
# 1 unit in the last place (ulp) after rounding.
# For example 2.675 == 2.6749999999999998.
# To correct this, we add a very small epsilon value, scaled to the
# the order of magnitude of the value, to tip the tie-break in the right
# direction.
# Credit: discussion with OpenERP community members on bug 882036
epsilon_magnitude = math.log2(abs(normalized_value))
# `2**(epsilon_magnitude - 52)` would be the minimal size, but we increase it to be
# more tolerant of inaccuracies accumulated after multiple floating point operations
epsilon = 2**(epsilon_magnitude - 50)
match rounding_method:
case 'HALF-UP': # 0.5 rounds away from 0
result = round(normalized_value + math.copysign(epsilon, normalized_value))
case 'HALF-EVEN': # 0.5 rounds towards closest even number
integral = math.floor(normalized_value)
remainder = abs(normalized_value - integral)
is_half = abs(0.5 - remainder) < epsilon
# if is_half & integral is odd, add odd bit to make it even
result = integral + (integral & 1) if is_half else round(normalized_value)
case 'HALF-DOWN': # 0.5 rounds towards 0
result = round(normalized_value - math.copysign(epsilon, normalized_value))
case 'UP': # round to number furthest from zero
result = math.trunc(normalized_value + math.copysign(1 - epsilon, normalized_value))
case 'DOWN': # round to number closest to zero
result = math.trunc(normalized_value + math.copysign(epsilon, normalized_value))
case _:
msg = f"unknown rounding method: {rounding_method}"
raise ValueError(msg)
return denormalize(result)
def float_is_zero(value, precision_digits=None, precision_rounding=None):
"""Returns true if ``value`` is small enough to be treated as
zero at the given precision (smaller than the corresponding *epsilon*).
The precision (``10**-precision_digits`` or ``precision_rounding``)
is used as the zero *epsilon*: values less than that are considered
to be zero.
Precision must be given by ``precision_digits`` or ``precision_rounding``,
not both!
Warning: ``float_is_zero(value1-value2)`` is not equivalent to
``float_compare(value1,value2) == 0``, as the former will round after
computing the difference, while the latter will round before, giving
different results for e.g. 0.006 and 0.002 at 2 digits precision.
:param int precision_digits: number of fractional digits to round to.
:param float precision_rounding: decimal number representing the minimum
non-zero value at the desired precision (for example, 0.01 for a
2-digit precision).
:param float value: value to compare with the precision's zero
:return: True if ``value`` is considered zero
"""
epsilon = _float_check_precision(precision_digits=precision_digits,
precision_rounding=precision_rounding)
return value == 0.0 or abs(float_round(value, precision_rounding=epsilon)) < epsilon
def float_compare(value1, value2, precision_digits=None, precision_rounding=None):
"""Compare ``value1`` and ``value2`` after rounding them according to the
given precision. A value is considered lower/greater than another value
if their rounded value is different. This is not the same as having a
non-zero difference!
Precision must be given by ``precision_digits`` or ``precision_rounding``,
not both!
Example: 1.432 and 1.431 are equal at 2 digits precision,
so this method would return 0
However 0.006 and 0.002 are considered different (this method returns 1)
because they respectively round to 0.01 and 0.0, even though
0.006-0.002 = 0.004 which would be considered zero at 2 digits precision.
Warning: ``float_is_zero(value1-value2)`` is not equivalent to
``float_compare(value1,value2) == 0``, as the former will round after
computing the difference, while the latter will round before, giving
different results for e.g. 0.006 and 0.002 at 2 digits precision.
:param float value1: first value to compare
:param float value2: second value to compare
:param int precision_digits: number of fractional digits to round to.
:param float precision_rounding: decimal number representing the minimum
non-zero value at the desired precision (for example, 0.01 for a
2-digit precision).
:return: (resp.) -1, 0 or 1, if ``value1`` is (resp.) lower than,
equal to, or greater than ``value2``, at the given precision.
"""
rounding_factor = _float_check_precision(precision_digits=precision_digits,
precision_rounding=precision_rounding)
# equal numbers round equally, so we can skip that step
# doing this after _float_check_precision to validate parameters first
if value1 == value2:
return 0
value1 = float_round(value1, precision_rounding=rounding_factor)
value2 = float_round(value2, precision_rounding=rounding_factor)
delta = value1 - value2
if float_is_zero(delta, precision_rounding=rounding_factor):
return 0
return -1 if delta < 0.0 else 1
def float_repr(value, precision_digits):
"""Returns a string representation of a float with the
given number of fractional digits. This should not be
used to perform a rounding operation (this is done via
:func:`~.float_round`), but only to produce a suitable
string representation for a float.
:param float value:
:param int precision_digits: number of fractional digits to include in the output
"""
# Can't use str() here because it seems to have an intrinsic
# rounding to 12 significant digits, which causes a loss of
# precision. e.g. str(123456789.1234) == str(123456789.123)!!
return "%.*f" % (precision_digits, value)
def float_split_str(value, precision_digits):
"""Splits the given float 'value' in its unitary and decimal parts,
returning each of them as a string, rounding the value using
the provided ``precision_digits`` argument.
The length of the string returned for decimal places will always
be equal to ``precision_digits``, adding zeros at the end if needed.
In case ``precision_digits`` is zero, an empty string is returned for
the decimal places.
Examples:
1.432 with precision 2 => ('1', '43')
1.49 with precision 1 => ('1', '5')
1.1 with precision 3 => ('1', '100')
1.12 with precision 0 => ('1', '')
:param float value: value to split.
:param int precision_digits: number of fractional digits to round to.
:return: returns the tuple(<unitary part>, <decimal part>) of the given value
:rtype: tuple(str, str)
"""
value = float_round(value, precision_digits=precision_digits)
value_repr = float_repr(value, precision_digits)
return tuple(value_repr.split('.')) if precision_digits else (value_repr, '')
def float_split(value, precision_digits):
""" same as float_split_str() except that it returns the unitary and decimal
parts as integers instead of strings. In case ``precision_digits`` is zero,
0 is always returned as decimal part.
:rtype: tuple(int, int)
"""
units, cents = float_split_str(value, precision_digits)
if not cents:
return int(units), 0
return int(units), int(cents)
def json_float_round(value, precision_digits, rounding_method='HALF-UP'):
"""Not suitable for float calculations! Similar to float_repr except that it
returns a float suitable for json dump
This may be necessary to produce "exact" representations of rounded float
values during serialization, such as what is done by `json.dumps()`.
Unfortunately `json.dumps` does not allow any form of custom float representation,
nor any custom types, everything is serialized from the basic JSON types.
:param int precision_digits: number of fractional digits to round to.
:param rounding_method: the rounding method used: 'HALF-UP', 'UP' or 'DOWN',
the first one rounding up to the closest number with the rule that
number>=0.5 is rounded up to 1, the second always rounding up and the
latest one always rounding down.
:return: a rounded float value that must not be used for calculations, but
is ready to be serialized in JSON with minimal chances of
representation errors.
"""
rounded_value = float_round(value, precision_digits=precision_digits, rounding_method=rounding_method)
rounded_repr = float_repr(rounded_value, precision_digits=precision_digits)
# As of Python 3.1, rounded_repr should be the shortest representation for our
# rounded float, so we create a new float whose repr is expected
# to be the same value, or a value that is semantically identical
# and will be used in the json serialization.
# e.g. if rounded_repr is '3.1750', the new float repr could be 3.175
# but not 3.174999999999322452.
# Cfr. bpo-1580: https://bugs.python.org/issue1580
return float(rounded_repr)
_INVERTDICT = {
1e-1: 1e+1, 1e-2: 1e+2, 1e-3: 1e+3, 1e-4: 1e+4, 1e-5: 1e+5,
1e-6: 1e+6, 1e-7: 1e+7, 1e-8: 1e+8, 1e-9: 1e+9, 1e-10: 1e+10,
2e-1: 5e+0, 2e-2: 5e+1, 2e-3: 5e+2, 2e-4: 5e+3, 2e-5: 5e+4,
2e-6: 5e+5, 2e-7: 5e+6, 2e-8: 5e+7, 2e-9: 5e+8, 2e-10: 5e+9,
5e-1: 2e+0, 5e-2: 2e+1, 5e-3: 2e+2, 5e-4: 2e+3, 5e-5: 2e+4,
5e-6: 2e+5, 5e-7: 2e+6, 5e-8: 2e+7, 5e-9: 2e+8, 5e-10: 2e+9,
}
def float_invert(value):
"""Inverts a floating point number with increased accuracy.
:param float value: value to invert.
:param bool store: whether store the result in memory for future calls.
:return: rounded float.
"""
result = _INVERTDICT.get(value)
if result is None:
coefficient, exponent = f'{value:.15e}'.split('e')
# invert exponent by changing sign, and coefficient by dividing by its square
result = float(f'{coefficient}e{-int(exponent)}') / float(coefficient)**2
return result
if __name__ == "__main__":
import time
start = time.time()
count = 0
def try_round(amount, expected, precision_digits=3):
result = float_repr(float_round(amount, precision_digits=precision_digits),
precision_digits=precision_digits)
if result != expected:
print('###!!! Rounding error: got %s , expected %s' % (result, expected))
return complex(1, 1)
return 1
# Extended float range test, inspired by Cloves Almeida's test on bug #882036.
fractions = [.0, .015, .01499, .675, .67499, .4555, .4555, .45555]
expecteds = ['.00', '.02', '.01', '.68', '.67', '.46', '.456', '.4556']
precisions = [2, 2, 2, 2, 2, 2, 3, 4]
for magnitude in range(7):
for frac, exp, prec in zip(fractions, expecteds, precisions):
for sign in [-1, 1]:
for x in range(0, 10000, 97):
n = x * 10**magnitude
f = sign * (n + frac)
f_exp = ('-' if f != 0 and sign == -1 else '') + str(n) + exp
count += try_round(f, f_exp, precision_digits=prec)
stop = time.time()
count, errors = int(count.real), int(count.imag)
# Micro-bench results:
# 47130 round calls in 0.422306060791 secs, with Python 2.6.7 on Core i3 x64
# with decimal:
# 47130 round calls in 6.612248100021 secs, with Python 2.6.7 on Core i3 x64
print(count, " round calls, ", errors, "errors, done in ", (stop-start), 'secs')