Odoo18-Base/extra-addons/web_cohort/models/models.py

186 lines
7.6 KiB
Python

# -*- coding: utf-8 -*-
# Part of Odoo. See LICENSE file for full copyright and licensing details.
from collections import defaultdict
from datetime import date, datetime
from dateutil.relativedelta import relativedelta
import babel.dates
from odoo import api, fields, models
from odoo.tools import DEFAULT_SERVER_DATE_FORMAT
from odoo.osv import expression
from odoo.tools.misc import get_lang
DISPLAY_FORMATS = {
'day': '%d %b %Y',
'week': 'W%W %Y',
'month': '%B %Y',
'year': '%Y',
}
class Base(models.AbstractModel):
_inherit = 'base'
@api.model
def get_cohort_data(self, date_start, date_stop, measure, interval, domain, mode, timeline):
"""
Get all the data needed to display a cohort view
:param date_start: the starting date to use in the group_by clause
:param date_stop: the date field which mark the change of state
:param measure: the field to aggregate
:param interval: the interval of time between two cells ('day', 'week', 'month', 'year')
:param domain: a domain to limit the read_group
:param mode: the mode of aggregation ('retention', 'churn') [default='retention']
:param timeline: the direction to display data ('forward', 'backward') [default='forward']
:return: dictionary containing a total amount of records considered and a
list of rows each of which contains 16 cells.
"""
rows = []
columns_avg = defaultdict(lambda: dict(percentage=0, count=0))
total_value = 0
initial_churn_value = 0
if measure != '__count':
domain = expression.AND([domain, [(measure, '!=', False)]])
measures = [f'{measure}:sum']
field = self._fields[measure]
if field.type == 'many2one':
measure = f'{measure}:count_distinct'
else:
measure = f'{measure}:{field.aggregator}'
measures.append(measure)
else:
measures = ['__count', '__count']
locale = get_lang(self.env).code
domain = expression.AND([domain, [(date_start, '!=', False)]]) # date not set are no take in account
row_groups = self._read_group(
domain=domain,
groupby=[date_start + ':' + interval],
aggregates=measures,
)
date_start_field = self._fields[date_start]
if date_start_field.type == 'datetime':
today = datetime.today()
convert_method = fields.Datetime.to_datetime
else:
today = date.today()
convert_method = fields.Date.to_date
for group_value, sum_value, value in row_groups:
total_value += value
group_domain = expression.AND([
domain,
['&', (date_start, '>=', group_value), (date_start, '<', group_value + models.READ_GROUP_TIME_GRANULARITY[interval])]
])
sub_group = self._read_group(
domain=group_domain,
groupby=[date_stop + ':' + interval],
aggregates=[measure],
)
sub_group_per_period = {
convert_method(group_value): aggregate_value
for group_value, aggregate_value in sub_group
}
columns = []
initial_value = sum_value
col_range = range(-15, 1) if timeline == 'backward' else range(0, 16)
for col_index, col in enumerate(col_range):
col_start_date = group_value
if interval == 'day':
col_start_date += relativedelta(days=col)
col_end_date = col_start_date + relativedelta(days=1)
elif interval == 'week':
col_start_date += relativedelta(days=7 * col)
col_end_date = col_start_date + relativedelta(days=7)
elif interval == 'month':
col_start_date += relativedelta(months=col)
col_end_date = col_start_date + relativedelta(months=1)
else:
col_start_date += relativedelta(years=col)
col_end_date = col_start_date + relativedelta(years=1)
if col_start_date > today:
columns_avg[col_index]
columns.append({
'value': '-',
'churn_value': '-',
'percentage': '',
})
continue
col_value = sub_group_per_period.get(col_start_date, 0.0)
# In backward timeline, if columns are out of given range, we need
# to set initial value for calculating correct percentage
if timeline == 'backward' and col_index == 0:
outside_timeline_domain = expression.AND(
[
group_domain,
['|',
(date_stop, '=', False),
(date_stop, '>=', fields.Datetime.to_string(col_start_date)),
]
]
)
col_group = self._read_group(
domain=outside_timeline_domain,
aggregates=[measure],
)
initial_value = float(col_group[0][0])
initial_churn_value = sum_value - initial_value
previous_col_remaining_value = initial_value if col_index == 0 else columns[-1]['value']
col_remaining_value = previous_col_remaining_value - col_value
percentage = sum_value and (col_remaining_value) / sum_value or 0
if mode == 'churn':
percentage = 1 - percentage
percentage = round(100 * percentage, 1)
columns_avg[col_index]['percentage'] += percentage
columns_avg[col_index]['count'] += 1
# For 'week' interval, we display a better tooltip (range like : '02 Jul - 08 Jul')
if interval == 'week':
period = "%s - %s" % (col_start_date.strftime('%d %b'), (col_end_date - relativedelta(days=1)).strftime('%d %b'))
else:
period = col_start_date.strftime(DISPLAY_FORMATS[interval])
if mode == 'churn':
mode_domain = [
(date_stop, '<', col_end_date.strftime(DEFAULT_SERVER_DATE_FORMAT)),
]
else:
mode_domain = ['|',
(date_stop, '>=', col_end_date.strftime(DEFAULT_SERVER_DATE_FORMAT)),
(date_stop, '=', False),
]
columns.append({
'value': col_remaining_value,
'churn_value': col_value + (columns[-1]['churn_value'] if col_index > 0 else initial_churn_value),
'percentage': percentage,
'domain': mode_domain,
'period': period,
})
rows.append({
'date': babel.dates.format_date(
group_value, format=models.READ_GROUP_DISPLAY_FORMAT[interval],
locale=locale,
),
'value': value,
'domain': group_domain,
'columns': columns,
})
return {
'rows': rows,
'avg': {'avg_value': total_value / len(rows) if rows else 0, 'columns_avg': columns_avg},
}